
open source approach to telco networking

network service engine

May, 2017

vNetwork Structure

Seite 2Inhaltsverzeichnis | Kapitel | Unterkapitel Autor Rainer Stademann:

Access

DB

DB

DB

shared data layer

subscribers sessions policies OAM
…

OSS

network service control plane

c-vNF X c-vNF Yc-EPC c-5G c-VPNc-vCPE

network service user plane

u-vCPE u-EPC u-5G u-VPN u-vNF X u-vNF Y

data center infrastructure

compute network underlay storage

c-vGi

u-vGi

Confidential

traditional service networking architecture

Inhaltsverzeichnis | Kapitel | Unterkapitel Autor: Rainer Stademann Seite 3

embedded edge products fuse access with service functions into a single box

...attachment

circuits

IP/MPLS

VPN

VPN PE router

Metro

Ethernet

MEF

service

MEF switch

DSL

access

Internet

service

BRAS/BNG

IPTV

service

DSL

access

Video edge

HFC

access

Internet

service

CMTS

Cellular

access

Internet

service

mobile GW

• advantage: access and service specific system optimization

• disadvantages:

o many vendor specific boxes with different OA&M and life cycles

o rigid feature set, difficult and expensive to change

o enormous complexity: ~ O(#accesses * #services)

major disruptions on the way

Inhaltsverzeichnis | Kapitel | Unterkapitel Autor: Rainer Stademann Seite 4

• disaggregation of network elements by fine granular network

function virtualization enables radically new service architecture

– 1:1 virtualization of existing network elements is a dead end

– makes traditional service edge products (physical or virtualized) obsolete

• ‘open source’ and IT’zation of networking disrupts the existing

business models and value chains

• current IT cloud needs significant networking enhancements to

become a Telco cloud

– X millions of virtual connections/networks, much higher transaction rates, more

complex network services

hitting the traditional service edge vendors

what has changed in networking?

Inhaltsverzeichnis | Kapitel | Unterkapitel Autor: Rainer Stademann Seite 5

• general purpose processors (GPP) can now process

service edge traffic at negligible HW cost

• no need for ASICs with rigid functions and closed SDKs in a

service data plane (but ASICs still essential in packet optical transport underlay)

• data plane*) completely programmable with higher

programming languages

• powerful open source available for data plane: Linux kernel

• convergence of compute, storage and service networking on an

IT driven Telco cloud platform

value-add moves from ASICs to open source software running on GPP

*)we use the terms ‘data plane’ and ‘user plane’ interchangeably

major user plane options

Seite 6

1 traditional, embedded network elements

• ASIC based forwarding plane

• proprietary i/f and SDK

• closed source SW

• fits for underlay

• in DC under pressure by open source

white box projects (e.g. Open Compute

Project)

2 traditional, cloudified network elements

• emulating ASIC of embedded product on x86

• keep proprietary i/f and SDK

• re-use of the closed source SW from embedded product

• almost as inflexible as the embedded

product

• no or limited disaggregation and scale-

out

3 ‘classical SDN’ with Openflow or P4 i/f

• ASIC based forwarding plane

• standardized i/f for a match/action pipeline

• so far not a big success *)

• needs new networking software (‘re-

invent the wheel’)

4 open source, native x86/GPP based user plane • natural fit for cloud environment

4a • Linux kernel based

• cooperative offload options to NICs, FPGA, ASIC co-

processors (XDP, switchdev)

• re-use x million lines of code

• full disaggregation and scale out

support

4b • Kernel bypass, e.g. Intel DPDK, netmap • needs new data plane software

• higher forwarding performance

• re-use of kernel based control plane

*) see https://www.opennetworking.org/images/stories/downloads/sdn-resources/special-reports/Special-Report-OpenFlow-and-SDN-State-of-the-Union-B.pdf

Inhaltsverzeichnis | Kapitel | Unterkapitel Autor: Rainer Stademann

why now ?

Seite 7

• Linux namespace functionality since 2013 (kernel 3.8) rather complete

(https://lwn.net/Articles/531114/)

• namespace technology got a major push with “Docker”

• recent advances in cooperative kernel offload (e.g. XDP, switchdev), as

opposed to bypass (e.g. DPDK)

• extended Berkeley Packet Filter (eBPF) since E2014 (kernel 3.18) allows

for in-kernel flow processing in C with a control plane running in user

space

• latest IT advances, like reactive programming (e.g. Akka) simplify

concurrent programming task in scale out systems

IT clouds drive light-weight virtualization technology and new distributed system solutions

Inhaltsverzeichnis | Kapitel | Unterkapitel Autor: Rainer Stademann

what others are doing

Seite 8

• AT&T is a strong promoter of open source initiatives, e.g.

– CORD
®

(Central Office Re-architected as a Datacenter)

– ONOS
®

– recently open sourcing the ECOMP orchestrator

• however, most of the controllers and orchestrators target an

OpenFlow or P4 controlled data plane based on ASICs with

match-action-tables

– requires enormous effort to re-implement the existing IP/Ethernet feature set

– the missing business case limits so far OpenFlow/P4 adoption in the market*)

focus is on the control and management plane for an OpenFlow or P4 controlled data plane

*) https://www.opennetworking.org/images/stories/downloads/sdn-resources/special-reports/Special-Report-OpenFlow-and-SDN-State-of-the-Union-B.pdf

Inhaltsverzeichnis | Kapitel | Unterkapitel Autor: Rainer Stademann

OpenFlow (match + action pipeline) is a misfit

for a GPP based data plane

Inhaltsverzeichnis | Kapitel | Unterkapitel Autor: Seite 9

• OpenFlow was designed for an ASIC based data plane

– ‘misconception when SDN started’: ‘network comprised entirely of hardware

switches’, citing Scott Shenker, Stanford Seminar - Software-Defined Networking at the Crossroads

• a GPP based data plane is naturally programmed directly in a high level

programming language w/o emulating match-action pipelines

– Linux kernel / hypervisor / container networking and other GPP based

implementations like DPDK, FD.IO and Netmap are examples

– vSwitch is the only counter example, but only used for rather simple L2 networking in

IT clouds

• full Ethernet and IP networking remains THE fundamental requirement for

a Telco cloud

– no business case to re-invent/re-implement it with OpenFlow or P4 for GPP

our proposed PoC: x86/Linux based service edge

Seite 10

• towards an access agnostic, programmable IP/Ethernet edge built on

commodity servers with open source software

• use the latest Linux kernel as a programmable data plane

– basically following RFC 3549 (‘Linux Netlink as an IP Services Protocol’)

– utilize recent improvements (eBPF, XDP)

• Proof-of-Concept: virtual residential gateway service (vRGW) on top of

Linux servers

– plumbing the capabilities and limits of open source networking

– scalability, programmability, reliability, performance, stability, networking features

• cloud ready, distributed architecture

– scale-out of control and data plane

– fine-granular functional disaggregation

– micro-service like approach for networking

investigating potential and realities with a Linux based prototype for a vRGW service

Inhaltsverzeichnis | Kapitel | Unterkapitel Autor: Rainer Stademann

Confidential

what we did: Linux kernel as programmable data plane

Seite 11

programming the data plane with networking abstractions of Linux

Linux kernel

controller

trafficaccess other cloudstraffic

data plane agent

Linux Netlink i/f

netlet

library

a netlet performs a generic ‘micro’ networking task as a transaction on top of the Linux kernel

netlet x

input

context

dynamically

loadable

output

context JSON based, asynchronous

messaging

netlet A

netlet B

netlet C

state x

events

Web UI

JSON/Websockets, Rest API

Inhaltsverzeichnis | Kapitel | Unterkapitel Autor: Rainer Stademann

Confidential

controllers
controllers

independent scale-out of user and control plane

Seite 12

multi-service and multi-tenant capable (slicing)

Linux kernel

trafficaccess other cloudstraffic

data plane

agent

NIC NIC

controllers/apps

per

service/tenant

service Cservice Bservice A

c/m –plane

state

service slices

high

performance

messaging

Linux Netlink i/f

Inhaltsverzeichnis | Kapitel | Unterkapitel Autor: Rainer Stademann

summary of our preliminary results

Inhaltsverzeichnis | Kapitel | Unterkapitel Autor: Rainer Stademann Seite 13

• main network functions used: network namespaces, nftables (NAT),

dnsmasq (DHCP, DNS server), routing, bridging, ARP-proxy, unnumbered

interfaces, GRE-tunnels for Ethernet and IP overlays

• created up to 500 vRGW instances on a single VMWare VM

(HP ZBook G3, 4 logical cores of XEON E3-1505M, 2.8GHz, 24GB)

– creation speed 3-5 vRGW instances per second

– single instance requires ~20 MB main memory

– so far no hard kernel limits hit

• traffic throughput

– to be tested, however when engineered bandwidth moderate (< some Mbit/s/home)

throughput unlikely to be the bottleneck

a modern Linux kernel easily supports the vRGW functions

