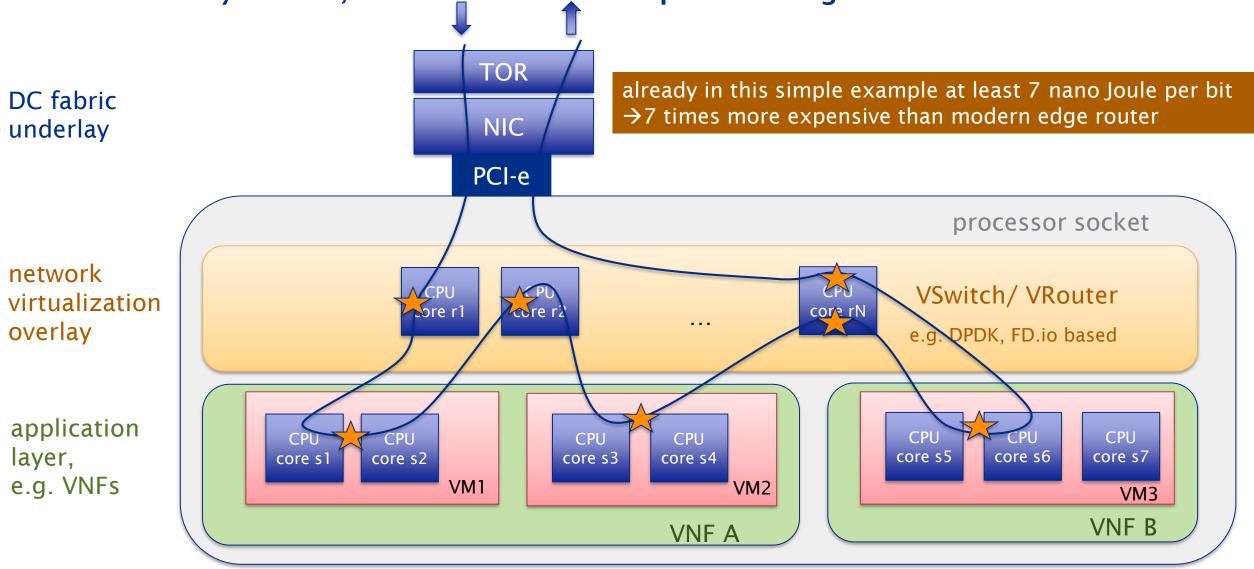

energy efficient data plane evolution

or why ETSI Network Function Virtualization is not sustainable

current many-hop network architecture not sustainable applications must move closer to the users and the network layer

*) Note: after ~2022 CMOS scaling ends!

Inhaltsverzeichnis | Kapitel | Unterkapitel


a VSwitch is ~10 times less efficient than a TOR or NIC switch, and even less efficient than a latest edge router

TOR-Switch	NIC	VSwitch (DPDK) DPDK Generational Performance	Edge Router
		figure figure 1000 1000	
Edge-Core Networks Wedge 100-32x	2x100G Mellanox NIC MCX516A-CCAT	2 x Intel E5-2658V4, 2x14 cores, 14nm, ^{347 Mpps, 64byte packets}	Juniper MX 2010: 10 slot,16x100GbE/slot
3,2 Tb/s, 436 W	200 Gb/s, ~ 17.6 W	233 Gb/s, ~300W 210W CPUs, 40W NICs, 50W other	16 Tb/s, ~15,5 kW, 25°C
~ 136 pico-Joule/bit	~ 89 pico-Joule/bit	~ 1286 pico-Joule/bit	~ 950 pico-Joule/bit
@ 100% load with 64B packets			
sources: respective product data sheets, NIC and VRouter power assumes efficiency of 0.91 https://dpdksummit.com/Archive/pdf/2017India/DPDK-India2017-RamiaJain-ArchitectureRoadmap.pdf			

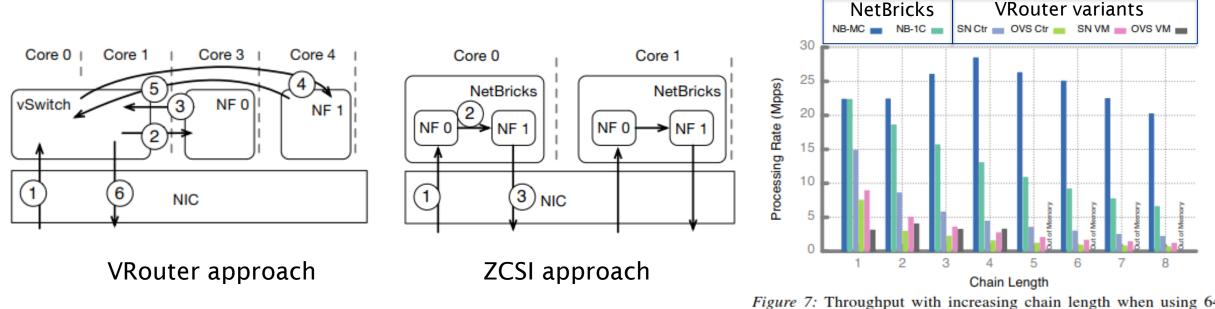
'classical' laaS virtualization of a data plane with VRouter/VSwitch is fundamentally broken, as it is needs multi hop forwarding

Autor:

problem is recognized in industry and academic

two major mitigation approaches are proposed:

- apply network functions without moving packets through a VRouter, e.g.
 - latest proposal of Scott Shenker: Zero Copy Software Isolation network functions exchange references to packets, not the packet data itself
 - requires move from IaaS (HW abstraction) to PaaS (SW-functional abstractions)
 - Xpress Data Path: packets stay in kernel/driver, network functions (eBPF) are loaded into the data path
 - Identifier Locator Addressing (ILA)*) as NVO
- offload the General Purpose Processor from bulk data transfer tasks
 - well known from SAN and HPC technologies, e.g. remote DMA


*) IETF draft-herbert-nvo3-ila-04

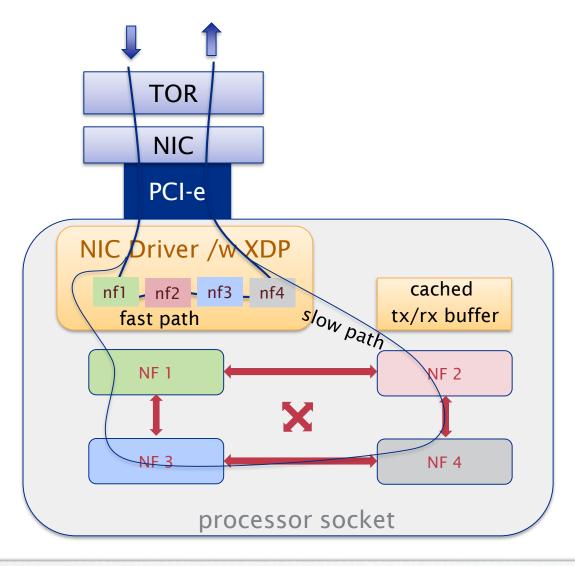
DMA: direct memory access HPC: high performance computing NVO: network virtualization overlay SAN: storage area network

SILVERENGINE

Zero Copy Software Isolation (ZCSI) / 'NetBricks' *)

applying network functions without moving packets in-between

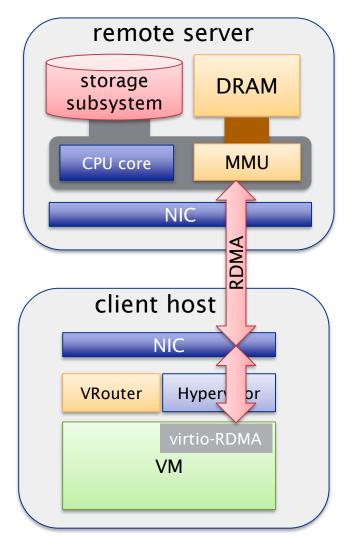
Figure 7: Throughput with increasing chain length when using 64B packets. In this figure NB-MC represents NetBricks with multiple cores, NB-1C represents NetBricks with 1 core.


- I/O handled by DPDK, network functions implemented in safe programming language Rust
- concurrent code checked by Rust compiler for synchronization issues
- requires Rust based execution platform for network functions, no virtualization(!)
- so far, no control plane in Netbricks (e.g. ARP, ICMP, ...)

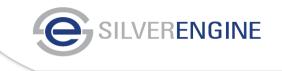
*) A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, S. Shenker, ODSI 11/2016, "NetBricks: Taking the V out of NFV", <u>https://people.eecs.berkeley.edu/~apanda/assets/papers/osdi16.pdf</u>, <u>http://netbricks.io</u>

Xpress Data Path

a Linux based programmable data path with DPDK-like performance



- XDP offload for forwarding traffic, whenever possible
- chaining of network functions in an XDP enabled NIC driver
- no need for proprietary DPDK and extra licenses
- XDP as a service, as part of an NFV PaaS


an offload example from HPC industry: Remote Direct Memory Access

offloading the virtual network overlay from bulk data transfers

- remote CPU bypass with RDMA for inter server bulk traffic
- native network: Infiniband
- RDMA over converged IP/Ethernet fabric
 iWARP (RFC 5040-5044)
 - RoCE
- 100G throughput per server possible today
- scalable Network File System over RDMA
 - parallel NFS over RDMA (RFC 5661-5664)
 - supported in upstream Linux kernel

Conclusion

- we expect applications to drive a massive IT'zation of edge and core
 - only with a common harmonized network- and application-architecture energy efficiency targets are achievable
- for network-bound applications classical laaS following ETSI NFV is fundamentally broken
- Zero Copy Soft Isolation looks like a very promising solution approach
- HPC network offload technologies mitigate the problem, but impact the application architecture
- all approaches must be based on services offered to applications and network functions by a Telco-PaaS
- need to replace ETSI NFV architecture with a NF over PaaS architecture